Eigenvalue Estimates for Non-Selfadjoint Dirac Operators on the Real Line

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators

We consider quite general h-pseudodifferential operators on R with small random perturbations and show that in the limit h → 0 the eigenvalues are distributed according to a Weyl law with a probabality that tends to 1. The first author has previously obtained a similar result in dimension 1. Our class of perturbations is different. Résumé Nous considérons des opérateurs h-pseudodifférentiels as...

متن کامل

Resolvent estimates for non-selfadjoint operators with double characteristics

We present recent progress in the understanding of the spectral and subelliptic properties of non-elliptic quadratic operators with application to the study of return to equilibrium for some systems of chains of oscillators. We then explain how these results allow to describe the spectral properties and to give sharp resolvent estimates for some classes of non-selfadjoint pseudodi erential oper...

متن کامل

Dirac eigenvalue estimates on surfaces

We prove lower Dirac eigenvalue bounds for closed surfaces with a spin structure whose Arf invariant equals 1. Besides the area only one geometric quantity enters in these estimates, the spin-cut-diameter δ(M) which depends on the choice of spin structure. It can be expressed in terms of various distances on the surfaces or, alternatively, by stable norms of certain cohomology classes. In case ...

متن کامل

Spectral Estimates and Non-Selfadjoint Perturbations of Spheroidal Wave Operators

We derive a spectral representation for the oblate spheroidal wave operator, which is holomorphic in the aspherical parameter Ω in a neighborhood of the real line. For real Ω, estimates are derived for all eigenvalue gaps uniformly in Ω. The proof of the gap estimates is based on detailed estimates for complex solutions of the Riccati equation. The spectral representation for complex Ω is deriv...

متن کامل

On Eigenvalue Estimates for the Submanifold Dirac Operator

We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Poincaré

سال: 2013

ISSN: 1424-0637,1424-0661

DOI: 10.1007/s00023-013-0259-3